If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-20x-15=0
a = 16; b = -20; c = -15;
Δ = b2-4ac
Δ = -202-4·16·(-15)
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{85}}{2*16}=\frac{20-4\sqrt{85}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{85}}{2*16}=\frac{20+4\sqrt{85}}{32} $
| 2x+3=9x+31 | | 9x/7=5/21+3x/2 | | X=400000-7y/5 | | X=400000-7y | | (9-3x)-(17x-10)=1 | | 7(2.5x-1.5)=12(0.5x-0.3) | | 8x-2+10=4 | | 4m/6=4 | | x=2.5(4) | | 6x+2-2(-8x-3)=6(x-1) | | 4(v+4)=-2(3v-7)+4v | | 4096^4x-3=256 | | -3(-4v+8)-2v=4(v-2)-7 | | 4096^2x-2=256 | | -16/9=-4u | | -3w/8=21 | | 4w-8+2(5w+9)=-2(w+4) | | 5/9w=-10 | | 10=x/3600 | | -15/8=-3u | | 4+4(3w-3)=-2(2w-4)+6w | | 46=2/3x | | -2(4u-8)+8u=6(u+5) | | X-5x+135=0 | | X+1/4x=3x+1/2x-7/3x | | t-10=7t-4 | | 5x=27+(x/5) | | 5/10=n/15 | | t+8=5t+4 | | -2(x+4)=22 | | t+6=5t-6 | | 16.8=-20y |